home | alphabetical index | ||||||||

## Fractal
A Fractals are generally irregular, and thus not definable by traditional geometry -- furthermore, fractals tend to have repetitive details, visible at any arbitrary scale. A fractal may have fractional Hausdorff (or box-counting) dimensions; they may also be defined recursively.
These characteristics of fractals, while intuitively appealing, are (aside from dimensionality) remarkably hard to condense into a mathematically precise definition. The problem with most definitions of fractal is that there are objects that one would like to call fractals but which do not satisfy the definition. To name a few problems: there is no precise meaning of "too irregular"; there are many ways that an object can be self-similar; not every fractal is defined recursively; and the many definitions of dimension admitting fractional values don't, in general, agree numerically (so an acceptable definition of fractal cannot be based on a single fractal dimension). Approximate fractals (objects displaying complex structure over a very broad, but finite, scale range) are easily found in nature. These naturally occurring fractals (like clouds, mountains, river networks, and systems of blood vessels) have both lower and upper cut-offs, but they are separated by several orders of magnitude. It is noteworthy that, despite being ubiquitous, fractals were not considered a legitimate object of study (or even defined!) until well into the 20th century. Some common examples of fractals include the Mandelbrot set, Lyapunov fractal, Cantor set, Sierpinski carpet and triangle, Peano curve and the Koch snowflake. Fractals can be deterministic or stochastic. Chaotic dynamical systems are often (if not always) associated with fractals. There are three broad categories of fractals that are commonly studied at this time:
- Iterated function systems. These have a fixed geometric replacement rule (Cantor set, Sierpinski carpet, Sierpinski gasket, Peano curve, Koch snowflake).
- Fractals defined by a recurrence relation at each point in a space (such as the complex plane). An example of this type are the Mandelbrot set and the Lyapunov fractal. These are also called escape-time fractals.
- Random fractals, generated by stochastic rather than deterministic processes, for example Fractal landscapes and Lévy flights.
Harrison extended Newtonian calculus to fractal domains, including the theorems of Gauss, Green, and Stokes. Fractals are usually calculated by computers with fractal software. See External Links. Random fractals have the greatest practical use, and can be used to describe many highly irregular real-world objects. Examples include clouds, mountains, turbulence, coastlines and trees. Fractal techniques have also been employed in image compression, as well as a variety of scientific disciplines. See also: Fractal art, Graftals, Hausdorff dimension, Constructal theory
## References, further reading-
^{1}*Fractal Geometry*, by Kenneth Falconer; John Wiley & Son Ltd; ISBN 0471922870 (March 1990) -
*The Fractal Geometry of Nature*, by Benoit Mandelbrot; W H Freeman & Co; ISBN 0716711869 (hardcover, September 1982). -
*The Science of Fractal Images*, by Heinz-Otto Peitgen, Dietmar Saupe (Editor); Springer Verlag; ISBN 0387966080 (hardcover, August 1988) -
*Fractals Everywhere*, by Michael F. Barnsley; Morgan Kaufmann; ISBN 0120790610
## Fractal generators
- Ultra Fractal - popular software for Microsoft Windows
- Fractint - available for most platforms)
- Makin' Magic Fractals
- ChaosPro - for Microsoft Windows
- Xaos - Realtime generator - Windows, Mac, Linux, etc
## External links
| ||||||||

copyright © 2004 FactsAbout.com |