List of topics in logic

This is a list of topics in logic, by Wikipedia page. See also list of rules of inference.

There is a list of paradoxes on the paradox page. There is a list of fallacies on the logical fallacy page. Modern mathematical logic is at the list of mathematical logic topics page. There is a more complete list of logicians. For introductory set theory and other supporting material see the list of basic discrete mathematics topics.

=A=

Abacus logic -- Abduction (logic) -- Affirming the consequent -- Antecedent -- Antinomy -- Argument form -- Aristotelian logic -- Axiom -- Axiomatic system -- Axiomatization

=B=

Biconditional elimination -- Biconditional introduction -- Bivalence and related laws -- Boolean algebra

=C=

Categorial logic -- College logic -- Combinatorial logic -- Combinatory logic -- Conditional -- Conditional proof -- Conjunction elimination --Conjunction introduction -- Conjunctive normal form -- Consequent --Contradiction -- Contrapositive -- Converse (logic) -- Curry's paradox

=D=

De Morgan's laws -- Deductive reasoning -- Denying the antecedent --Disjunction elimination -- Disjunction introduction -- Disjunctive normal form -- Disjunctive syllogism -- Double negative elimination

=E=

Exclusive disjunction -- Existential quantification

=F=

First-order predicate - First-order predicate calculus - First order resolution -- Fluidic logic --Free variables and bound variables -- Fuzzy logic

=H=

Heyting algebra -- Higher-order predicate -- Horn clause

=I=

Iff -- Inductive logic -- Inductive logic programming -- Intuitionistic logic -- Invalid proof -- Inverse (logic)

=K=

Karnaugh map

=L=

Law of excluded middle -- Law of non-contradiction -- Laws of logic -- Logic -- Logic gate -- Logical assertion -- Logical biconditional -- Logical conditional --Logical conjunction -- Logical disjunction -- Logical equivalence -- Logical fallacy -- Logical nor -- Logical operator -- Logicism -- Logic programming

=M=

Metalogic - Modus ponens -- Modus tollens -- Multi-valued logic

=N=

Naive set theory -- Natural deduction -- Necessary and sufficient -- Negation -- Non-Aristotelian logic -- Non-monotonic logic

=O=

Open sentence

=P=

Paraconsistent logics -- Paradox -- Polish notation -- Predicate -- Principia Mathematica -- Principle of bivalence -- Proof theory -- Proposition -- Propositional calculus

=Q=

Quantification -- Quod erat demonstrandum:(QED)

=R=

Reductio ad absurdum -- Relevant logic -- Rule of inference

=S=

Satisfiability -- Scholastic logic -- Second-order predicate -- Self-reference -- Sequent -- Sequent calculus -- Sequential logic -- Sheffer stroke -- Singular term -- Soundness -- Square of opposition -- Sufficient condition -- Syllogism

=T=

Tautology -- Temporal logic -- Term logic -- Ternary logic -- Theorem -- Truth -- Truth value -- Type theory

=U=

Unification -- Universal quantification -- Uniqueness quantification

=V=

Vacuous truth -- Validity -- Venn diagram

Famous Logicians




copyright © 2004 FactsAbout.com